Zone diagrams in compact subsets of uniformly convex normed spaces

نویسندگان

  • Eva Kopecká
  • Daniel Reem
  • Simeon Reich
چکیده

A zone diagram is a relatively new concept which has emerged in computational geometry and is related to Voronoi diagrams. Formally, it is a fixed point of a certain mapping, and neither its uniqueness nor its existence are obvious in advance. It has been studied by several authors, starting with T. Asano, J. Matoušek and T. Tokuyama, who considered the Euclidean plane with singleton sites, and proved the existence and uniqueness of zone diagrams there. In the present paper we prove the existence of zone diagrams with respect to finitely many pairwise disjoint compact sites contained in a compact and convex subset of a uniformly convex normed space, provided that either the sites or the convex subset satisfy a certain mild condition. The proof is based on the Schauder fixed point theorem, the Curtis-Schori theorem regarding the Hilbert cube, and on recent results concerning the characterization of Voronoi cells as a collection of line segments and their geometric stability with respect to small changes of the corresponding sites. Along the way we obtain the continuity of the Dom mapping as well as interesting and apparently new properties of Voronoi cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of zone diagrams in compact subsets of uniformly convex spaces

A zone diagram is a relatively new concept which has emerged in computational geometry and is related to Voronoi diagrams. Formally, it is a fixed point of a certain mapping, and neither its uniqueness nor its existence are obvious in advance. It has been studied by several authors, starting with T. Asano, J. Matoušek and T. Tokuyama, who considered the Euclidean plane with singleton sites, and...

متن کامل

Existence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials 

Introduction Let  be a nonempty subset of a normed linear space . A self-mapping  is said to be nonexpansive provided that  for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...

متن کامل

The geometric stability of Voronoi diagrams in normed spaces which are not uniformly convex

The Voronoi diagram is a geometric object which is widely used in many areas. Recently it has been shown that under mild conditions Voronoi diagrams have a certain continuity property: small perturbations of the sites yield small perturbations in the shapes of the corresponding Voronoi cells. However, this result is based on the assumption that the ambient normed space is uniformly convex. Unfo...

متن کامل

Fixed points for total asymptotically nonexpansive mappings in a new version of bead ‎space‎

The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...

متن کامل

Nonexpansive Iterations in Uniformly Convex W -hyperbolic Spaces

We propose the class of uniformly convex W -hyperbolic spaces with monotone modulus of uniform convexity (UCW -hyperbolic spaces for short) as an appropriate setting for the study of nonexpansive iterations. UCW -hyperbolic spaces are a natural generalization both of uniformly convex normed spaces and CAT (0)-spaces. Furthermore, we apply proof mining techniques to get effective rates of asympt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1002.3583  شماره 

صفحات  -

تاریخ انتشار 2010